1,206 research outputs found

    From Conatus to Duty Spinoza and Kant on self-preservation and suicide

    Get PDF
    ABSTRACT:Spinoza maintained that the conatus (striving) for self-preservation is a necessity, so that nothing would freely and willingly killitself. In this process reason , by providing adequate plays a role asguide to conatus , however, this weakens Spinoza’s opposition againstsuicide: on the one hand, common people , by lacking the guidance ofreason commit suicide because they have not obtained adequate ideas;on the other hand, people who have adequate ideas under the guidanceof reason might kill themselves in order to avoid greater evil . This articleargues that Kant changed the role of reason , making it something higherthan conatus , and at the same time, he turned the command of practicalreason (duty) into something that common people could grasp, therebysolv ing Spinoza's defect: it is a duty for an individual to self preserveKant opposed any kind of suicide in order to avoid greater evil , and thiscommand of reason ( can reach all common people As a result, noone has the excuse to commit suicide. It is Kant, not Spinoza, who madethe opposition to suicide a general moral law.Keywords:conatus , duty , self preservation, suicide, reaso

    Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

    Full text link
    In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.Comment: 6 page

    Spectroscopic Ellipsometry - Application on the Classification of Diamond-Like Carbon Films

    Get PDF
    Diamond-like carbon (DLC) films have been spreading from their theoretical basis to worldwide industrial applications because of their unique properties. Since their properties depend strongly on the conditions of synthesis, the effective classification of DLC films becomes quite necessary. From the ternary phase diagram to the Japan New Diamond Forum standard, the classification attempts are also accompanied by the continuous development of their applications. Generally, the hydrogen content and sp3/(sp2 + sp3) ratio are the primary parameters for their classification. However, researchers are afraid that currently sp3/(sp2 + sp3) ratio estimated included not only network sp3 but also sp3 hybrid carbons in the hydrogen-terminated cluster. Simultaneously, the above classification methods need to use the large equipment, such as the synchronous radiation source. Therefore, to realize more straightforward to classify DLC films efficiently, the optical constants (refractive index (n) and extinction coefficient (k)) have been proposed in 2013 to be effective method to classify the DLC films, for which a lot of considerable discussion in the past ISO/TC-107 meetings has been made. The purpose of this chapter is to introduce the latest developments of optical constants on the classification of DLC films and explore their relationship with the current standard

    Optimum design of printed electronics inkjet printer using response surface model and multi-objective genetic algorithm

    Get PDF
    The purpose of this project is to improve the optimization design of complex mechanical structure based on the combination of response surface model and multi-objective genetic algorithm (MOGA). First of all, we built the finite element model (FEM) for the printed electronics inkjet printer through experimental modal analysis (EMA) and finite element analysis (FEA). The analysis of the static and dynamic characteristics of the FEM confirms the weak points of the structure and its actual performance. Next, using central composite design (CCD) method, it selects sample points in the design space and carries out numerical simulation and establishes the initial second order response surface model with eight design variables to further determine the inkjet printer’s first order natural frequency, weight and maximum deformation of the inkjet head. Finally, it carries out an approximation optimization of response surface model using MOGA to obtain the Pareto optimal solution set. Our simulation results determine that the optimal solution can increase the first order natural frequency of the inkjet printer by 36.3 % to effectively avoid the resonance region caused by the servo motor excitation. The maximum deformation of inkjet head decreases by 33 % and the weight of the inkjet printer can be reduced by 19.5 %. We believe that optimization can improve the performance of the inkjet printer and reduce its weight at the same time. The method proposed in this study is suitable for multi-objective optimization of complex structures similar to the printed electronics inkjet printer

    CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method.

    Get PDF
    Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology is a powerful tool to manipulate the genome with extraordinary simplicity and speed. To generate genetically modified animals, CRISPR/Cas9-mediated genome editing is typically accomplished by microinjection of a mixture of Cas9 DNA/mRNA and single-guide RNA (sgRNA) into zygotes. However, sgRNAs used for this approach require manipulation via molecular cloning as well as in vitro transcription. Beyond these complexities, most mutants obtained with this traditional approach are genetically mosaic, yielding several types of cells with different genetic mutations. Recently, a growing body of studies has utilized commercially available Cas9 protein together with sgRNA and a targeting construct to introduce desired mutations. Here, we report a cloning-free method to target the mouse genome by pronuclear injection of a commercial Cas9 protein:crRNA:tracrRNA:single-strand oligodeoxynucleotide (ssODN) complex into mouse zygotes. As illustration of this method, we report the successful generation of global gene-knockout, single-amino-acid-substituted, as well as floxed mice that can be used for conditional gene-targeting. These models were produced with high efficiency to generate non-mosaic mutant mice with a high germline transmission rate
    corecore